바닥 슬래브의 보강재 피치는 얼마입니까?

모 놀리 식 슬래브의 보강은 복잡하고 까다로운 작업입니다. 구조 요소는 콘크리트가 대처할 수없는 심각한 굽힘 하중을 감지합니다. 이러한 이유로, 주입 할 때 보강 케이지가 장착되어 슬래브를 보강하고 하중이 가해지면 붕괴되지 않도록합니다.

구조를 강화하는 방법? 작업을 수행 할 때 몇 가지 규칙을 따라야합니다. 개인 주택을 건축 할 때, 그들은 일반적으로 상세한 작업 초안을 개발하지 않으며 복잡한 계산을하지 않습니다. 로드가 적기 때문에 규정 문서에 제시된 최소 요구 사항을 충족하면 충분하다고 생각합니다. 또한 숙련 된 건축자가 이미 만들어진 물체의 예를 따라 아마추어를 배치 할 수 있습니다.

건물의 판은 두 가지 유형이 있습니다 :

일반적인 경우, 바닥 슬래브와 기초 슬래브의 보강에는 어떤 중요한 차이점이 없습니다. 그러나 첫 번째 경우 큰 지름의 막대가 필요할 것임을 아는 것이 중요합니다. 이것은 기초 요소 아래에 탄력있는 기초가 있다는 사실에 기인합니다. 지구는 하중의 일부를 취합니다. 그러나 보강 슬래브의 계획이 추가 증폭을 의미하지는 않습니다.

기초 판 강화

이 경우 재단의 보강은 고르지 않습니다. 가장 큰 파열의 장소에서 구조를 강화하는 것이 필요합니다. 요소의 두께가 150mm를 초과하지 않는 경우, 일체형 지하실 슬래브에 대한 보강이 단일 메쉬에 의해 수행됩니다. 이것은 작은 구조물의 건설 중에 발생합니다. 현관 아래에도 얇은 판이 사용됩니다.

주거용 건물의 경우, 기초의 두께는 일반적으로 200-300mm입니다. 정확한 값은 토양의 특성과 건물의 질량에 따라 다릅니다. 이 경우, 강화 메쉬는 서로 위에 두 개의 레이어로 쌓입니다. 구조물의 설치시에 콘크리트의 보호 층을 관찰 할 필요가있다. 금속 부식 방지에 도움이됩니다. 파운데이션을 만들 때 보호 층의 값은 40mm라고 가정합니다.

보강재 지름

재단에 대한 보강 작업을하기 전에 단면을 선택해야합니다. 플레이트의 작동 봉은 양방향으로 수직으로 배열됩니다. 수직 클램프를 사용하여 상단과 하단을 연결합니다. 한 방향의 모든로드의 총 단면적은 같은 방향으로 플레이트의 단면적의 0.3 % 이상이어야합니다.

기초면이 3m를 초과하지 않으면 작동 봉의 최소 허용 직경이 10mm로 설정됩니다. 다른 모든 경우에는 12mm입니다. 최대 허용 단면적 - 40 mm. 실제로는 12 ~ 16mm 막대가 가장 많이 사용됩니다.

재료를 구매하기 전에 각 직경에 필요한 보강재의 무게를 계산하는 것이 좋습니다. 미 녹음 비용에 대해 5 %가 가산됩니다.

기본 너비에 금속 깔기

기본 너비에 걸쳐 지하실의 모 놀리 식 슬래브의 보강 계획은 일정한 셀 치수를 제안합니다. 로드의 단차는 플레이트의 위치와 방향에 관계없이 동일하다고 가정합니다. 보통 그것은 200-400 mm 범위입니다. 건물이 무거울수록 모 놀리 식 슬래브가 보강되는 경우가 많습니다. 벽돌집의 경우 200mm의 거리를 지정하는 것이 좋습니다. 나무 나 프레임의 경우에는 더 큰 피치를 취할 수 있습니다. 평행 한 막대 사이의 거리는 기초의 두께를 1.5 배 이상 초과 할 수 없다는 것을 기억하는 것이 중요합니다.

보통 동일한 요소가 상부 및 하부 보강재에 사용됩니다. 그러나 다른 지름의로드를 배치 할 필요가 있다면 더 큰 단면을 가진로드가 아래에서 배치됩니다. 이 보강베이스 플레이트를 사용하면 밑면의 구조를 강화할 수 있습니다. 가장 큰 굽힘 힘이 발생합니다.

주요 보강 요소

기초에 대한 짝을 이루는 보강재의 끝에서 U 자형 막대를 깔아야합니다. 보강재의 상부와 하부를 하나의 시스템으로 묶기 위해 필요합니다. 또한 토크로 인한 구조 파괴를 방지합니다.

폭발 영역

본드 프레임은 굽힘이 가장 많이 느껴지는 곳을 고려해야합니다. 주거지에서 펀칭 구역은 벽이지지되는 구역이됩니다. 이 영역에 금속을 놓는 것은 더 작은 단계로 수행됩니다. 이것은 더 많은로드가 필요할 것임을 의미합니다.

예를 들어 200mm 피치를 기본 지하실 폭으로 사용하는 경우 펀칭 구역의 경우이 값을 100mm로 줄이는 것이 좋습니다.
필요한 경우 슬래브의 프레임을 모 놀리 식 지하 벽의 프레임과 연결할 수 있습니다. 이를 위해 재단의 건설 단계에서 금속 봉의 해제가 포함됩니다.

모 놀리 식 바닥 슬래브의 보강

민간 건축물의 바닥 슬라브에 대한 보강재 계산은 거의 수행되지 않습니다. 이것은 모든 엔지니어가 수행 할 수있는 다소 복잡한 절차입니다. 슬래브를 강화하려면 설계를 고려해야합니다. 다음 유형 중 하나입니다.

후자의 옵션은 독립적으로 작업 할 때 권장됩니다. 이 경우 거푸집 공사를 설치할 필요가 없습니다. 또한, 금속 시트의 사용을 통해 구조의 베어링 용량을 증가시킵니다. 오류의 가장 낮은 확률은 전문 시트에 중첩의 제조에 달성된다. 늑골이 붙은 판의 변종 중 하나라는 점은 주목할 가치가 있습니다.

갈비뼈가 겹치면 전문가가 아닌 경우 문제가 될 수 있습니다. 그러나이 옵션은 콘크리트 소비를 크게 줄일 수 있습니다. 이 경우의 디자인은 강화 된 가장자리와 그 사이의 영역이 있음을 의미합니다.

또 다른 옵션은 연속 슬랩을 만드는 것입니다. 이 경우 보강과 기술은 슬래브 기초를 제조하는 과정과 유사합니다. 가장 큰 차이점은 사용되는 콘크리트 종류입니다. 모 놀리 식 중첩의 경우 B25보다 낮을 수 없습니다.

보강을위한 몇 가지 옵션을 고려해 볼 가치가 있습니다.

전문 시트 중복

이 경우 H-60 ​​또는 H-75라는 브랜드의 프로파일을 작성하는 것이 좋습니다. 그들은 좋은 지지력을 가지고 있습니다. 성형 된 가장자리를 아래로 향하게 할 때 재료가 장착됩니다. 다음으로 모 놀리 식 바닥 슬래브가 설계되었으며 보강재는 두 부분으로 구성됩니다.

  • 갈비뼈에 작업 봉;
  • 상단에 메쉬.
전문 시트에 의한 바닥 슬래브 보강

가장 일반적인 옵션은 늑골에 직경 12 또는 14mm 막대 하나를 설치하는 것입니다. 막대의 설치에 적합한 플라스틱 인벤토리 클립. 큰 스팬을 막아야하는 경우, 2 개의로드로 된 프레임이 리브에 설치 될 수 있으며, 리브는 수직 칼라로 상호 연결됩니다.

슬래브의 상부에서 수축 가능한 메쉬가 보통 놓여집니다. 직경 5 mm의 요소를 사용하여 제조하는 경우. 셀 치수는 100x100mm입니다.

단단한 판

오버랩의 두께는 종종 200mm라고 가정합니다. 이 경우 보강 케이지에는 서로 위에 두 개의 그리드가 있습니다. 이러한 그리드는 직경 10mm의로드에서 연결해야합니다. 스팬의 중간에는 추가 보강 바가 하단에 설치됩니다. 이러한 요소의 길이는 400mm 이상입니다. 추가 막대의 피치는 주요 막대의 피치와 같습니다.

지원 분야에서는 추가적인 보강을 제공해야합니다. 그러나 그것을 정상에 올려 놓으십시오. 또한 판의 끝 부분에 U 자형 클램프가 필요합니다.베이스 판과 동일합니다.

보강 슬래브의 예

재료를 구입하기 전에 각 지름에 대한 무게로 바닥 슬래브 보강을 계산해야합니다. 이렇게하면 비용이 초과되는 것을 피할 수 있습니다. 결과 금액에 약 5 %의 미 계산 된 비용 마진을 추가합니다.

단조 슬래브 편직 보강

프레임의 요소를 서로 연결하려면 두 가지 방법, 즉 용접과 바인딩이 필요합니다. 건축 현장의 조건에서의 용접은 구조물의 약화를 초래할 수 있기 때문에 모 놀리 식 슬래브에 대한 보강재를 편직하는 것이 좋습니다.

직경이 1 ~ 1.4mm 인 어닐링 된 와이어가 작업에 사용됩니다. 블랭크의 길이는 보통 20cm와 동일합니다. 프레임 뜨개질을위한 두 가지 유형의 공구가 있습니다.

두 번째 옵션은 프로세스를 크게 가속화하고 복잡성을 줄입니다. 그러나 자신의 손으로 집을 세우기 위해서는 많은 인기를 얻었다. 작업을 수행하려면 작업대 유형에 따라 미리 특수 템플리트를 준비하는 것이 좋습니다. 폭 30 ~ 50mm, 길이 3m 이하의 목재 판재를 소재로 사용하며 보강 봉의 필요한 위치에 해당하는 구멍과 홈이 그 위에 만들어져있다.

중첩을위한 보강 선택

보강재는 철근 콘크리트 구조물의 강도를 높이기위한 건축 자재 유형입니다.

전기자는 구조물의 강도를 향상시키는 데 사용됩니다.

여러 종류의 밸브가 있습니다.

피팅의 유형

밸브의 프로파일은 링, 낫 및 혼합으로 구분됩니다.

총체적으로, 다양한 속성과 특성에 따라, 6 가지 보강 클래스가 있습니다. 단단한 보강재와 유연 보강재를 구별하십시오. 강성의 정도에 더하여, 클래스 차이와 특정 보강의 기초가 된 합금면에서 그라데이션이 있습니다.

섹션의 직경에 따라 중공과 가벼운 보강을 구별합니다. 매끄러운 프로파일을 가진 보강재 또는주기적인 갈비뼈가있는 프로파일이 있습니다. 후자는 최대 접착력을 보장하기 위해 대개 다량의 콘크리트와 함께 사용됩니다. 일반적으로 갈비는 서로 다른 높이에 있으며 고체 모 놀리 식 형태로 슬래브를 만들기 위해 서로 다른 각도로 배치됩니다.

보강재의 사용 조건에 따라이 건축 자재는 긴장되고 스트레스를받지 않습니다.

또한 프로필에 부드러운 피팅이 있습니다. 그것은 노치없이 만들어진다.

철근은 주로 금속 가공 전문 대기업에서 생산됩니다. 생산 과정에서 발생하는 폐기물의 사용을 포함하는 본격적인 기술주기를 사용하는 것이 바람직합니다.

첫 번째 단계는 철근 용 철재의 수용이며, 철근은 변형, 압연 또는 인발 가공을 통해 추가 가공됩니다. 드로잉은 에너지 및 노동 집약적 인 과정입니다. 최소의 산업 폐기물이 동반되므로 가장 경제적입니다. 고온의 사용없이 변형 된 보강 강과이 공정의 결과는 냉간 연신 보강재입니다.

청소하고 곧게 펴고 나면 지정된 막대 치수의 특수 기계를 사용하여 철근을 자릅니다. 골조 구조의 건설을위한 특정 강재 등급에서는 보강재의 용접이 허용됩니다.

적용 범위

전기자는 콘크리트를 부을 때 따라 배치됩니다.

보강의 주요 목적은 콘크리트, 파티션 또는 기초를 보강하는 것입니다. 이 소재 덕분에 코팅은 내구성과 신뢰성이 높아집니다.

리지드 보강은 주로 프레임이나 앵글이나 채널과 같은 부품의 제작에 사용됩니다. 유연한 보강재로 다양한 형태의 그리드, 막대 또는 프레임을 작성합니다.이를 기반으로 폼웍에서 필요한 구조를 만들 수 있습니다.

보강은 구조의 무결성을 제공하여 작동 기간 동안 다양한 종류의 왜곡 및 균열 발생을 방지 할 수 있습니다.

시간이 지남에 따라 개별 개인 건설은 점점 더 적극적으로 발전하고 있으며, 이로 인해 바닥재 보강과 같은 소재의 인기가 높아지고 있습니다. 빌더는 어떤 이점을 추구합니까? 더 큰 범위에서 중장비, 특히 크레인을 사용하지 않고 슬라브를 사용하는 것이 현실적입니다. 또 다른 확실한 이점은 거의 모든 양식이나 매개 변수의 겹침을 만들 수 있다는 것입니다. 겹쳐지는 전기자는 높은 수준의 내화성을 가지며 무거운 하중을 견딜 수 있습니다. 연구에 따르면 모노리딕 오버랩은 최소 60 분 동안 화재의 영향을 견딜 수 있습니다.

보강의 좋은 예는 모 놀리 식 콘크리트 슬라브입니다. 콘크리트 층이 얇을수록 금속 소비량은 커집니다.

사설 건축 환경에서, 편평한 샘플의 모 놀리 식 슬랩이 가장 널리 퍼져있다. 이러한 건축 자재를 사용하여 슬래브 및 보강재 자체의 매개 변수를 올바르게 계산해야합니다. 따라서 슬래브의 두께는 1 ~ 30의 비율로 스팬의 크기에 따라 달라집니다 (예 : 베어링 벽 사이에 너비가 6 미터 인 경우 슬래브 두께는 최소 20cm 여야 함). 콘크리트 층을 줄이는 경우에는 금속 소비량을 늘릴 필요가 있습니다. 슬래브 두께가 증가함에 따라 콘크리트 소비를 극대화해야합니다.

철근 콘크리트 겹침은 자신의 손으로 만드는 것이 매우 쉽습니다.

보강 슬래브 제조에 필요한 공구 :

  • 콘크리트 믹서;
  • 모래;
  • 분쇄 한 돌 또는 자갈;
  • 직접 피팅;
  • 용접 기계 (크로 셰 뜨개질 갈고리가 대안 임);
  • 목재;
  • 고강도 시멘트;
  • 다른 행동의 전동 공구.

오버랩 만들기

슬래브를 보강하기 위해서는 8-14 mm 범위의 보강재를 사용하는 것이 바람직하며, 지름은 설계 하중의 크기에 따라 달라집니다. 따라서 슬래브 두께가 150mm 미만인 경우 규정 문서에 명시된 다른 모든 조건을 준수하여 슬래브의 단일 레이어 보강을 수행하는 것이 좋습니다.

콘크리트 바닥의 강화 계획.

슬래브 층이 150mm를 초과하는 경우, 슬래브의 상부와 하부에 격자 형태의 강화 된 압연 제품을 2 층으로 장착 할 필요가있다. 뼈대는 뜨개질 와이어로 묶을 수 있으며 셀 크기는 150 x 200 x 200 mm입니다. 슬래브 보강을 위해 주로 같은 단면의 봉을 사용하십시오. 이것이 주요 보강입니다. 개별 장소를 보강하려면 추가 보강이 필요합니다.

큰 하중이 가해지는 영역은 추가적인 보강을 받게됩니다.

슬래브의 중간에서 하부 그물이 추가로 보강됩니다. 상부 메쉬는지지 영역에서 보강 될 수 있습니다. 구멍 근처 또는 하중이 집중되는 곳에서 플레이트의 응력이 집중되는 장소에서 추가 보강을하는 것이 좋습니다.

추가 보강은 최대 1500 mm 크기의 별도로드를 사용하여 만들어집니다. 대부분의 경우 구멍을 추가로 보강하여 주 보강재에 의존합니다.

거푸집 공사

강화 슬래브를 만들 때 가장 중요한 순간 ​​중 하나는 거푸집 공사의 올바른 설치와 설치입니다. 따라서, 설치가 부분적으로 허용 되더라도 판의 전체 크기에 설치하는 것이 바람직합니다. 거푸집 공사로, 당신은 지붕을 강화하기 위해 나중에 사용될 수있는 판자와 널빤지를 사용할 수 있습니다. 강제적 인 조치는 콘크리트의 무거운 중량으로 인한 거푸집의 철저한 고정입니다.

기초의 강도와 신뢰성을 높이려면 거푸집 공사를 강화하는 것이 좋습니다.

섬유판은 거푸집 틀 위에 배치해야하며 한 번에 두 번 사용할 수 있습니다. 보강재의 보호 층은 보강 메쉬 아래에 추가 지지대가있는 최소 20mm 20mm 여야합니다.

전체 구조물은 고품질 콘크리트로 채워야합니다. 거의 4 주 안에 모 놀리 식 슬래브를 사용할 준비가됩니다. 콘크리트 강도가 100 % 수준에 도달하는 데 필요한 시간입니다. 이 기간의 만료시에만 허용되는 거푸집 공사의 해체가 있습니다.

시멘트 젤리가 틈을 통해 새어 나와 콘크리트 자체의 강도에 악영향을 미칠 수 있기 때문에 거푸집에 구멍이 없는지 확인해야합니다.

보호 강화 층은 2cm보다 작을 수 없기 때문에, 거푸집으로 폼웍을 보충하는 것이 바람직하다. 콘크리트의 일관성은 너무 얇거나 두껍지 않아야합니다. 덩어리는 최대 압축 및 가능한 보이드 충전을 위해 플라스틱이어야하고 잘 움직일 수 있어야합니다.

범람 된 거푸집 공사는 정기적 인 유지 보수가 필요합니다. 따라서 여름철에 콘크리트가 마르지 않도록하려면 수분을 이용하여 수분을 가볍게 적시고 폴리에틸렌으로 덮어야합니다. 4 주 기간이 만료되기 전에 석판을 사용해야하는 경우 임시 지원을해야합니다.

추가 소음 단열재를 제작하려면 스크 리드 아래에 깔린 돌을 채우는 것이 좋습니다.

겹치기위한 보강 슬래브를 만들 때는 콘크리트가 양호한 음향 지휘자로 자리 매김했기 때문에 추가적인 방음 처리가 필요합니다. 방음 장치는 자갈 (팽창 된 점토 자갈)을 스크 리드 아래에 직접 쏟아 부음으로써 얻을 수 있습니다. 또한이 상황에서, cerositic 흡음 혼합물이 유용합니다.

콘크리트의 또 다른 단점 - 높은 열전도율. 이로 인해 모노리스의 끝이 추가로 절연되어야했습니다.

천장 보강을 계산하고 설계하려면 사용 가능한 특수 프로그램 중 하나를 사용할 수 있습니다. 종종 이러한 서비스는 다양한 종류의 디자인 기관에서 제공합니다.

모 놀리 식 중첩은 벽뿐만 아니라 기둥을 지지물로 사용할 수있게 해 주므로 집의 배치에 더 많은 가능성과 변형이 가능합니다.

철근 콘크리트 슬래브의 바닥은 보드 보드 또는 바를 가진 합판으로 만들 수 있습니다. 측벽은 보드 또는 합판으로 만들 수 있지만이 옵션은 경제적으로 수익성이 높지 않습니다. 내부 영역은 보드로 덮여 있습니다.

사용의 특징

보강재의 주된 작동 부분은 하중이 주로 슬래브의 위에서 아래로 전달 된 이후에 모든 부분에 균등하게 분포되기 때문에 하단 부분입니다. 따라서, 하부는 인장력으로 특성화 될 수있는 하중을 겪고있다. 차례로, 판의 상부는 압축을 목표로하는 하중을 받는다.

보강 슬래브의 계획.

모 놀리 식 슬래브를 만드는 것은 콘크리트 펌프를 사용하는 것이 가장 좋습니다. 주조 시간 중에는 깊은 진동기 인 특수 장치로 콘크리트를 압축하는 것이 좋습니다. 경화 중에 콘크리트는 수축과 미세 균열의 출현을 특징으로합니다. 이 경우 전체 구조에 물을 살포하는 것이 바람직합니다.

겹쳐지는 전기자는 A400C보다 낮지 않은 열간 압연 생산으로,주기적인 프로파일의 고품질 등급의 강으로 만들어야합니다. 매끄러운 유형의 보강을 사용하는 것은 바람직하지 않습니다.이 재료로 고품질의 작업을 수행 할 수있는 전문가를 찾는 것은 사실상 불가능합니다.

굴곡 모 놀리 식 슬래브를 만드는 것이 필요한 경우 적어도 4 개의 보강재 열을 만들어야합니다. 하단 2 개는 스팬을 따라 그리고 스팬을 가로 질러 위치해야하며, 비슷하게 두 개의 상단을 배치해야합니다. 스팬은지지 벽이 서로 떨어져있는 거리를 의미합니다. 직사각형 판의 경우에는 짧은면을 측정해야합니다.

특수 클램프에 보강재의 아래 줄을 놓는 것이 좋습니다. 완성 된 프레임은 다른 고 강성이어야합니다. 그것은 매우 간단합니다 - 사람의 무게를 견뎌야하며, 그를 보강층 위에서 자유롭게 걸을 수 있어야합니다. 선행 조건은 펌프를 이용하여 콘크리트 혼합물을 운반하는 동안로드가 고정되어 있어야한다는 것입니다. 혼합물을 붓기 전에 보강재의 직경과 간격을 프로젝트에 지정된 매개 변수와 일치하는지 최종 점검하는 것이 좋습니다. 한 번만 채워야합니다.

침수 된 판은 건조 에서뿐만 아니라 다양한 침전물로부터 보호되어야합니다.

보강을 위해 콘크리트 혼합기를 사용하는 것이 좋습니다.

보강을 위해서는 일반적인 수제 콘크리트가 아닌 콘크리트 믹서에서 직접 혼합하여 사용하는 것이 좋습니다. 이 콘크리트를 사용하여 건물이 슬래브에 의해 막히는 경우 특정 조성을 준수하는지 여부를 판단 할 수 있습니다. 따라서, 입구에서, 혼합물은 반드시 첨가제의 양 및 응집체의 조성을 조사해야한다. 이러한 혼합물은 장시간 박리되지 않고 강도가 증가하여 구별됩니다.

보강 수업을 선택할 때 실수하지 않는 것이 중요합니다. 따라서 건물에서 요구하는 것보다 낮은 등급의 채널이나 보강을 선택하면 중첩되는 진동이 발생할 수 있습니다.

측정되지 않은 부속품을 구입하는 경우 건축 자재 비용을 약간 절약 할 수 있습니다.이 자재는 다른 종류의 제품보다 약간 저렴합니다.

채널의 끝이 단지 벽이 아니라면, 강화할 수있는 직사각형의 shtrob가 될 수 있다면 바닥 판의 강도를 강화할 수 있습니다. 따라서 홈의 길이를 50mm 이상으로 만들어야합니다. 따라서 바닥 판은 벽돌 벽의 내부에 직접 배치됩니다.

빌더 간 혁신은 경량 콘크리트를 사용하여 바닥 슬래브를 만드는 것입니다. 그는 산업 믹서 측면에서 어려움을 겪을 수 있으며 콘크리트 믹서의 기능을 돌봐야합니다.

일반적으로 중첩을 위해 강화를 사용하는 것은 어렵지 않으며, 재료 선택에 대한 책임있는 접근 방식을 취하고 승인 된 지침을 따르는 것으로 충분합니다. 결제 회사의 도면을 사용하면 돈뿐 아니라 신경과 시간도 절약 할 수 있습니다.

모 놀리 식 바닥 슬래브의 보강과 계산의 기초

신뢰할 수있는 겹침을 만들려면 보강재를 올바르게 만들어야하며, 이는 굽힘 하중 하에서 강도를 제공하고 기초에 대한 압력을 고르게 분산시킵니다. 모 놀리 식 바닥 슬라브는 현장에 장비를 들어 올릴 필요가 없으므로 가격이 저렴합니다. 규제 문서의 공식을 사용하여 작은 범위에 대한 예비 계산을 할 수 있습니다.

천장 틀의 설계에 따라 목재 및 철근 콘크리트가 설치됩니다. 후자는 다음과 같이 나뉩니다.

  • 다양한 디자인의 표준 철근 콘크리트 슬라브;
  • 모 놀리 식 겹침.

SNiP의 요구 사항에 따라 전문 제작 된 기성품 강화판의 장점 : 주조 중 성형 된 공동이 존재하기 때문에 무게가 적습니다. 스토브의 내부 구조의 수와 모양은 다음과 같습니다.

  • 다중 중공 - 둥근 종 방향 구멍이 있음;
  • 늑골 - 복잡한 표면 프로파일;
  • 중공 - 좁은 모양의 패널이 인서트로 사용됩니다.

기성품 슬라브는 예를 들어 고층 빌딩 건설과 같은 대규모 건축에서의 사용을 정당화합니다. 그러나 그들은 누워있을 때 자신의 단점이 있습니다 :

  • 관절의 존재;
  • 리프팅 장비의 사용;
  • 표준 객실 크기에만 맞습니다.
  • 상상의 중첩을 만들 수없는 경우, 추출물을위한 개구부 등

석판 슬라브 설치는 비용이 많이 든다. 특별 차량으로 운송하거나 크레인으로 적재하고 설치하는 데 비용을 지불해야합니다. 특수 장비를 두 번 설치하지 않으려면 즉시 기계에서 벽에 플레이트를 장착하는 것이 바람직합니다. 우리가 작은 별장과 주택의 개별적인 건설을 고려한다면, 전문가들은 독립적 인 바닥 생산을 권장합니다. 콘크리트가 현장에 직접 부어집니다. 사전 제작 된 폼웍 트림 및 보강 된 메쉬.

철근 콘크리트 바닥재는 2 개의 재료로 완성 된 슬래브와 동일한 방식으로 이루어집니다.

  • 철봉;
  • 시멘트 모르타르.

콘크리트는 경도가 높지만 부서지기 쉽고 변형을 견디지 못하고 충돌로 인해 붕괴됩니다. 금속은 부드럽고 굽힘 및 비틀림에 대한 변형을 허용합니다. 이 두 가지 재료를 결합 할 때 하중을 전달하는 내구력있는 구조가 얻어집니다.

  • 솔기와 관절의 부족;
  • 평평한 고체 표면;
  • 건물의 모든 형태와 크기에 중첩되는 능력;
  • 현장에서 밸브의 설치 및 조립이 수행됩니다.
  • 철근 콘크리트 모노리스는 구조를 강화하고 벽을 함께 묶습니다.
  • 설치 후 조인트를 밀봉하고 전이를 정렬 할 필요는 없습니다.
  • 바닥에 국부적으로 큰 짐은 기초에 균등하게 배부된다;
  • 계단과 통신문의 바닥 사이에 다양한 개구를 만드는 것이 용이하다.

보강의 단점은 보강 망의 조립에 대한 많은 인건비와 콘크리트 건조 및 경화의 긴 과정을 포함한다는 것입니다.

오버랩 매개 변수의 계산은 SNiP의 요구 사항을 기반으로 이루어져야합니다. 계산 된 강도의 크기가 30 %에 추가되거나 숫자에 1.3의 안전 계수가 곱해집니다. 계산에는 기초 위에 서있는 벽과 기둥 만지지합니다. 파티션은 지원을 제공 할 수 없습니다.

벽 사이의 거리에 대한 겹침 두께의 대략적인 계산은 1:30의 비율입니다 (각각 슬래브의 두께와 스팬의 길이). 참고서의 고전적인 예는 6 미터의 공간 폭, 즉 6000 mm입니다. 그런 다음 오버랩은 200mm의 두께를 가져야합니다.

벽 사이의 거리가 4 미터라면 계산에 따라 120mm 플레이트를 장착 할 수 있습니다. 실제로 모 놀리 식 슬래브의 보강은 부피가 큰 가구가 아닌 비 주거용 다락방에만 적합합니다. 나머지 층 (천장)은 두 줄의 보강 된 메쉬로 150mm를 만드는 것이 바람직합니다. 막대를 8mm 씩 두 배로 늘리면 두 번째 행을 절약 할 수 있습니다.

스팬이 6 m보다 큰 경우, 처짐 및 기타 하중이 크게 증가합니다. 모든 오버랩 치수 및 도면은 전문가가 수행해야합니다. 대략적인 계산에서는 모든 뉘앙스를 고려할 수 없습니다.

주거용 빌딩의 SNiP 권장 사항에 따르면, 겹치는 부분에는 2 줄의 강화 메시가 있어야합니다. 계산 된 두께에 따라 상단 행의 보강 단면이 작고 메쉬 크기가 클 수 있습니다. 6m 및 4m 비행에 대한 전문가의 권장 크기는 표에 나와 있습니다.

스팬 크기, 슬래브 두께, 그리드 레벨

바닥 막대 지름 (mm)

톱 바 직경 (mm)

셀 크기

6 m, 20 cm, 하한

6 m, 20 cm, 위

최대 6 m, 20 cm, 상단

4 m, 15 cm, lower

4m, 15cm, 상단

계산은 벽 사이의 최대 거리에서 수행됩니다. 한 층의 구내 위에 동일한 두께의 겹침이있는 경우 계산은 최대 크기의 공간에서 수행됩니다. 예상 값은 반올림됩니다.

메쉬는 저탄소 강 3A의 열간 압연 된 라운드 섹션으로 만들어집니다. 이것은 금속이 높은 소성력을 가짐을 의미하며, 지진으로 인한 큰 정적 하중과 진동, 중장비의 작업, 약한 토양으로 콘크리트 겹침을 유지하는 것이 좋습니다.

로드의 길이는 솔리드 오버랩을 작성하기에 충분하지 않을 수 있습니다. 이렇게하려면 도킹 블렌딩이 수행됩니다. 자동차는 10 지름의 거리에 나란히 놓여 있고 와이어로 묶여 있습니다. 두께가 8mm 인 막대의 경우 이중 조인트는 80mm (8cm)입니다. 마찬가지로, 압연 된 F12 - 48cm 조인트의 경우, 막대의 도킹이 이동되었으므로 한 줄에 들어 있어서는 안됩니다.

연결을 위해 솔기를 따라 용접을 할 수 있습니다. 이것은 디자인의 유연성을 잃어 버리게됩니다.

메시로드는 1.5-2 mm 와이어로 상호 연결됩니다. 각 교차점이 단단히 꼬여 있습니다. 그리드 사이의 거리는 약 8cm이며, 크기가 8mm 인 막대가 제공됩니다. 바인딩은 하단 그리드의 교차점에 있어야합니다.

낮은 보강재 아래에서 콘크리트 층을 2cm에서 흘려 넣을 간격을 남겨 둘 필요가 있습니다. 이렇게하려면 플라스틱 원추형 클램프를 거푸집 위에 1m 간격으로 설치하십시오.

천장을 경계를 따라 벽과 연결하려면 덕트가 옆면 거푸집으로 만들어집니다. 그것은 수직으로 설치되어 콘크리트의 퍼짐의 경계 역할을합니다. 그 둘레에 둘레에 달아서 모서리를 강화시킵니다. 판이 단단 해지면이 상자가 제거되고 평평한 끝이 남습니다.

거푸집은 보강 용 메쉬의 조립이 완료된 후 양 끝과 세로 막대로부터 2cm 떨어진 지점에 설치되어 콘크리트 내부의 금속 위치를 보장합니다. 벽면에서 떨어진 거리는 벽돌과 콘크리트 블록의 경우 15cm입니다. 폭기 된 콘크리트는 내구성이 낮고 중첩의 겹침은 20cm입니다. 벽과 쏟아지는 거리는 진동을 흡수하는 특수 화합물로 덮여 있습니다. 이 레이어는 건물의 강도를 크게 향상시킵니다.

구멍이 남아 있어야하는 곳에 유사한 거푸집 공사가 배치됩니다. 이들은 주로 바닥, 파이프 출구, 환기 시스템 및 통신 배선 사이의 계단입니다. 그들은 그물로 닫히고 쏟아지지 않을 것이다.

올바른 천장 조립은 그림입니다. 그것에 당신은 시멘트의 금액에 달아서위한 와이어에서 모든 재료의 소비를 계산할 수 있습니다.

  1. 1. 도면을 그리기 전에 프로젝트가 없으면 집의 모든 객실과 외곽을 측정해야합니다. 그것들은 벽의 축으로부터 만들어집니다.
  2. 2. 쏟지 않을 모든 구멍을 표시하십시오.
  3. 3. 모든 베어링 벽 및 중간 벽 부분의 윤곽이 적용됩니다. 스트랩, 메쉬,로드의 두께 표시와 함께 경화, 결합 및 정렬 지점의 자세한 계획이 만들어집니다.
  4. 도면은 충전물의 가장자리로부터의 극단적 인 종 방향 막대의 위치 및 전지의 크기를 나타낸다.
  5. 5. 판의 아래쪽 평면 아래 profista의 크기를 계산합니다.

격자 패턴을 만들 때 대부분의 경우 셀 수는 정수가 아닙니다. 보강은 이동해야하며 벽 근처에서 동일한 크기의 셀을 가져와야합니다.

그것은 재료를 계산하는 것입니다. 막대의 길이에 숫자를 곱한 값입니다. 결과 값을 관절 비용에 더하고 결과 값을 2 % 증가시킵니다. 큰 방법으로 구입할 때 라운드 업하십시오.

겹쳐지는 영역은 플라스틱 리테이너의 수와 그리드 사이의 삽입물에 얼마나 많은 양이 감겨 지는지 계산됩니다.

시멘트 조성의 계산은 바닥의 두께와 그 면적을 기준으로합니다.

상단 및 하단의 전기자는 최소 두께가 20 mm 인 솔루션으로 덮어야합니다. 공기가 금속 표면에 들어가면 부식이 형성되고 파괴가 시작됩니다. 15 cm보다 두꺼운 겹침을 만들 때 2 개의 레이어를 보강하면 더 많은 솔루션이 맨 위에 배치됩니다.

이 도면은 또한 바닥면을 채우기위한 플랫폼 인 하부지지면을 만들기 위해 거푸집 수,지지 기둥 및 목재 빔을 계산하는 데 사용됩니다.

로드의 고정 장치를 착용하고 모든 개발자에게 와이어가있는 모든 교차점을 묶습니다. 안전을 보장하기 위해 집에서의 중첩 계산과 프로젝트 생성은 전문가에게 맡기는 것이 가장 좋습니다.

모든 계산이 수행되고 도면이 준비되면 슬래브의 전체 길이에 걸쳐 거푸집 공사를 설치하십시오. 이를 위해 50x150 mm 크기의 보드, 바 및 합판이 가장 자주 사용됩니다. 구조의 정확성은 레벨 또는 레벨을 사용하여 모니터됩니다. 다음 단계는 프로젝트에 따라 밸브의 맨 아래 줄을 배치하는 것입니다. 모든 금속 프레임 연결은 엇갈린 방식으로 수행됩니다.

결과적으로 보강재와 거푸집 사이의 전체 공간이 콘크리트로 채워지도록해야합니다. 이를 위해 그물을 스탠드 위에 놓고 뜨개질 와이어로 봉인합니다.

어떤 경우에도 요소를 바인딩하는 데 용접을 사용할 수 없습니다.

첫 번째 레이어에 밸브의 두 번째 행을 맞 춥니 다. 모든 항목은 특수 스탠드에 배치됩니다.

다음 단계는 먼저 액체로 폼 워크를 부은 다음 두꺼운 콘크리트 층 (대부분 M200)으로 부은다. 첫 번째 레이어는 일관성있는 사워 크림과 유사해야하며 공기 방울은 삽으로 조심스럽게 제거됩니다. 콘크리트 균열을 방지하기 위해 처음 2-3 일 동안 물로 적셔집니다. 전체 구조물이 단단 해지면 (최소 30 일이 걸릴 것입니다), 거푸집 공사가 제거됩니다.

주택 건설

저층 건물의 건축에서 가장 많이 사용되는 층은 중공 구조의 철근 콘크리트 제품입니다. 그러나, 그들의 설치를 위해 작업의 총 비용에 영향을 미치는 리프팅 장비가 필요했습니다. 또한 간단한 형상의 주택에는 기성품 플랫폼이 사용됩니다.

내용 :

일부 개발자는 철근 콘크리트의 자체 겹침을 선호합니다. 이 방법은 불규칙한 형상의 객체에 가장 적합합니다. 그 결과, 표준에서 벗어나 아키텍처 측면에서 복잡한 구조를 구축 할 수 있습니다.

바닥 판 보강 사진

바닥 슬래브 보강의 장점

기술적 인 미묘함을 고려하여 만들어진 강화 된 플랫폼은 12 년 이상 지속될 것입니다. 쏟을 때, 실내 장식에 값 비싸고 시간을 소비 할 필요가없는 천장 (이음매없이)과 같은 바닥이 얻어집니다.

장점은 다음과 같습니다.

  • 무게 이 디자인은 기성의 철근 콘크리트 슬래브에 비해 무게가 훨씬 적지 만이 요소는 강도에 영향을주지 않습니다. 그러나 그것은 기초의 하중을 줄이고 더 가벼운 건축 자재를 사용할 수있게합니다.
  • 힘 콘크리트 및 철과 같은 놀라운 소재의 탠덤은 견고한 기초를 만듭니다. 이 플랫폼은 대용량 및 고부하 구조를 겹치는 데 사용됩니다.
  • 신뢰성. 콘크리트 구조물은 보강재의 사용으로 인해 다 방향 하중에 매우 강합니다. 그들은 평방 미터 당 500kg에서 800kg의 하중을 견뎌냅니다.
  • 내화성. 사용 된 재료는 자체가 불연성입니다. 모 놀리 식 스토브는 연소를 지속하지 않으며 장시간 동안 화염의 영향을 견딜 수 있습니다.
  • 비용. 겹치는 비용은 분명히 공장 제품 비용을 초과하지 않습니다. 최종 가격은 장착 된 지역에 따라 결정됩니다.

보강 슬래브 란 무엇입니까?

  • 이 기술의 사용은 실내 계획의 측면에서 더 많은 기회를 제공합니다. 이 경우, 플랫폼은 매우 내구성이 있습니다. 그것은 쉽게 높은 부하를 견딜 수 있으며, 레코딩의 대상이되지 않으며 곤충, 곰팡이 및 기타 병원성 박테리아의 발전에 기여하지 않습니다.
  • 작품은 특정 규칙에 따라 수행됩니다. 건축 자재는 결혼의 존재가 용납 될 수 없기 때문에 잘 알려진 공급자로부터 구입합니다. 오직 기술을 고수함으로써 완성 된 플랫폼의 적절한 설계 강도에 대해 이야기 할 수 있습니다. 그렇지 않으면 오버랩이 변형되어 바닥 슬래브뿐만 아니라 건물 전체가 파괴 될 수 있습니다.
  • 바닥을 채우는 작업 철근이 배치 된 탈착 가능한 거푸집 공사를 통해 수행됩니다. 금속 막대는 뜨개질을하는 철사에 의해 함께 묶이거나 용접 기계에 의해 연결된다.
  • 단단한 금속 프레임은 콘크리트 덩어리에 완전히 움푹 들어가도록 배치됩니다. 따라서 밸브는 자체적으로 최대 하중을 가지게되고, 용액은 산소가 몸에 들어가 금속에 악영향을 미치지 못하게합니다.

슬래브 보강의 도식을 작성할 때 보조 보강재의 설치가 고려되어 단면을 보강합니다.

  • 미래 플랫폼의 중심에있다.
  • 기둥, 내벽, 아치 등과의 일체 식 접촉;
  • 부하의 집중도는 어디에 있습니까 (벽난로, 중장비 등을 설치할 때).
  • 천정과 구멍의 접촉 (계단을 위층으로 빠져 나가는 곳, 환기 또는 굴뚝 관과 기타 시스템을위한 통로).

모 놀리 식 바닥 슬라브 보강 팁

  • 보강재 겹침의 두께 계산은 길이에 따라 다릅니다. 베어링 지지대 사이의 거리가 5m이면 콘크리트 플랫폼의 두께는 170mm가되어야합니다. 즉, 계산은 1/30의 비율을 사용합니다. 그러나, 두께가 150 mm 미만인 구조물은 사용이 허용되지 않는다.

슬래브 보강도

  • 중첩되는 최소 두께의 금속 요소가 하나의 층에 적층된다. 이 매개 변수가 더 큰 경우 두 개입니다.
  • 모르타르 사용 콘크리트 M200 (이하가 아님). 좋은 성능과 합리적인 가격을 겸비한이 브랜드입니다. 압축 강도 등급은 150 kgf / cm.kv입니다.
  • 강봉의 지름은 8 ~ 14mm입니다. 2 층 구조의 금속 봉의 경우, 하부 열의 금속 압연의 직경은 상부보다 커야한다. 여기서 150x150 mm 또는 200x200 mm 셀을 가진 공장 제작 메쉬를 사용할 수 있습니다.
  • 폼웍은 보드 및 / 또는 내 습성 합판으로 구성됩니다. 주조 구조물의 무게가 평방 미터 당 300kg에 도달 할 수 있기 때문에 지지대가 단단히 고정됩니다. 지지 요소로는 텔레스코픽 랙 잭을 사용하는 것이 더 좋으며 필요한 높이를 고정밀 도로 설정할 수 있습니다. 각 지지대는 최대 2-2.5 kg의 하중을 견딜 수 있습니다.

보강 슬래브는 직접 해줍니다.

거푸집 공사

  • 이 디자인은 제거 가능하므로 나중에 사용할 수있는 재료를 사용하는 것이 좋습니다. 여기에 150x25 mm의 가장자리 보드가 적합합니다. 그러나이 목재의 두께에 약간의 오차가 있기 때문에 미래의 천정에 완벽하게 평평한 표면을 제공하지 못합니다. 모든 불규칙성은 석고 층 아래로 쉽게 숨을 수 있습니다. 특히 매달린 천장을 설치하려는 경우 특히 그렇습니다.
  • 평평한 표면을 갖는 것이 근본적으로 중요한 경우 보드 대신 두께 22 mm의 합판 합판을 사용하십시오. 그러나 그러한 거푸집 공사는 상당한 비용이 든다. 다음 옵션은 훨씬 경제적 일 것입니다. 동일한 트림 보드가베이스 역할을하고 두께 8-10mm의 합판이 그 위에 놓입니다.
  • 거푸집 공사는 방의 둘레에 설치되는 보드 (150x50mm)를 사용하여 장비합니다. 가로 막대는 600-800mm의 피치로 장착되며 수직 소품 또는 텔레스코픽 랙이 레벨에 따라 엄격하게 설치됩니다.
  • 프레임 위에는 보드가 150 x 25 mm 크기로 단단히 고정되어 있습니다. 그렇지 않으면 작업을 완료 할 때 (콘크리트를 붓고 건조한 후에) 거푸집을 분해 할 때 큰 어려움이 발생할 것입니다. 필요한 경우 합판 시트를 보드 위에 놓습니다.
  • 거푸집 공사에 사용 된 소재가 다른 용도로 사용될 수 있도록 디자인은 조밀 한 플라스틱 필름으로 덮여 있습니다. 캔버스는 끝 부분에 접근하지 않고 거푸집 공사를 기준으로 만 겹쳐지며 (200mm 이상), 작업 중 재료 걸림을 피하는 것이 중요합니다.
  • 슬래브가 지붕 밑의 마루 역할을하는 경우 사이드 보드 대신 콘크리트 레이어의 두께에 해당하는 높이의 벽돌 또는 셀 블록을 게시하는 것이 좋습니다.

슬래브가 제조 된 후 거푸집은 분해되지 않고 분해됩니다. 이와 관련하여 모든 체결 장치는 구조 외부에 있어야합니다.

전기자

  • 작은 스팬에 대한 플레이트의 형성을 위해 그리드를 자신의 손으로 연결할 수 있습니다. 막대를 길이없이 길게 놓는 것이 좋습니다. 가터니가 필요한 경우, 금속 요소는 적어도 0.5 미터의 중첩으로 장착됩니다.
  • 수직으로 배치 된 막대의 교차점은 와이어 또는 용접기로 고정됩니다. 스폿 용접은 큰 지름의 보강을 사용할 때 적합합니다. 용접 과정에서 얇은 막대가 얇아지면 금속의 강도가 감소하고 결과적으로 완성 된 판의 운반 능력이 저하됩니다.
  • 뜨개질을 위해, 당신은 특별한 후크를 사용할 수 있습니다. 그러나 특정 스킬이 여기에서 요구되며, 또한 와이어에서 비틀어 져야 여전히 꼬여 있어야합니다. 따라서 민간 주택 건설의 틀에서 일반 펜치를 할 수 있습니다.
  • 완성 된 금속 카드를 사용하면 공정을 매우 쉽게 할 수 있습니다. 그들의 누워는 중복과 함께 수행됩니다 - 적어도 2 세포, 즉, 같은 400mm 얻을 수 있습니다. 실패없이, 그들은 철사에 의해 서로 고정됩니다.
  • 금속 프레임은 거푸집 바닥에 직접 닿아서는 안됩니다. 그것은 돌 위에 설치되어 있으며, 적어도 40-50 mm 두께의 깨진 타일입니다. 철근 콘크리트 슬래브의 설계 두께가 150mm 이상인 경우 동일한 방법으로 다른 그리드를 편성합니다. 두 번째 보강층은 첫 번째 보강층과 멀리 떨어져 있어야하지만, 동시에 꼭대기는 콘크리트와 완전히 겹쳐 져야합니다.
  • 증가 된로드가있는 곳은 추가로드에 의해 증폭됩니다. 벤드 보강은 기계적으로 수행해야합니다. 금속의 가열은 구조를 변화시켜 연성을 상실하고 결과적으로 공작물의 균열을 초래합니다.
  • 뒤틀린 와이어 뜨개질은 상당히 간단한 방식으로 수확됩니다. 베이는 3-5 개의 등거리 지점에서 접착 테이프로 미리 고정되어 있으며 그 사이의 거리는 비틀기에 편리한 길이 여야합니다. 분쇄기를 사용하여 코일은 접착 테이프로 표시된 부분을 절단합니다.

콘크리트 용액

  • 거푸집 공사 특수 장비를 붓는 과정을 대폭 촉진합니다. 공장에서는 가소제, 발수제 및 기타 첨가제가 콘크리트 용액에 첨가되어 완성 된 용액의 물리적 기술적 특성을 향상시킵니다.
  • 그러나 콘크리트 믹서가 도착할 장소가 항상있는 것은 아니며 좁은 지역을 위해 주문하는 것은 비현실적입니다. 따라서, 경우에 따라서는 용액을 혼련 할 필요가있다. 스토브는 한 걸음에 부어 져야합니다. 2-3 명이 도움이 필요합니다.
  • 콘크리트의 한 부분을 반죽하기 위해 : 체질 된 모래 3 개; 잔해 또는 자갈 5 조각; 물은 전체 벌크 고형물의 20 %입니다.
  • 처음에는 모든 건조한 성분이 섞여서 필요한 양의 물이 첨가됩니다. 이를 수동으로 처리하는 것은 문제가 있으므로 콘크리트 믹서가 여기에서 사용됩니다.이 믹서는 음모의 이웃에서 가져 오거나 건설 회사에서 대여합니다.
  • 반죽 후 즉시 용액을 사용합니다. 말린 혼합물은 물로 희석 될 수 없지만 불행히도 버려 져야합니다. 따라서 적절한 양의 모든 준비 작업을 수행하고 붓기 직전에 콘크리트 용액을 혼합하는 것이 중요합니다.
  • 붓는 과정에서 반드시 진동기를 사용하십시오. 아무 것도 없으면 열려있는 그리드와 목재 거푸집 공사 요소에서 망치를 골고루 두드리는 방법으로 얻을 수 있습니다.
  • 경화 된 콘크리트 매스는 슬래브의 빠른 공정으로 미세 균열이 형성 될 수 있습니다. 외관을 피하기 위해 표면은 정기적으로 습기가 차고 플라스틱 랩으로 덮여있어 습기의 증발을 늦 춥니 다. 습윤은 직접 분사가 아닌 분무에 의해 수행됩니다.
  • 콘크리트는 4 주 후에 강도에 도달합니다. 판이 완전히 말랐는지 확인하기 위해 루핑 재료 조각을 작은 영역에 배치하고 하루 동안 방치합니다. 방수 소재 아래의 어두운 점은 플레이트가 건조하지 않아 사용 준비가되지 않았 음을 나타냅니다.

간단한 규칙을 따르고 고급 재료를 사용하면 초보자 용으로도 놀라운 결과를 얻을 수 있습니다. 개인 주택, 차고 또는 기타 건물을위한 그러한 천정이 최선의 선택입니다. 특히 특수 장비를 위해 건설중인 물체에 접근 할 수없는 경우. 또한, 강화 된 천장은 기성품 인 콘크리트 제품보다 더 많은 옵션을 제공합니다. 표준 크기의 공장에서 생산 된 제품은 직각을 기반으로하는 구조에 사용됩니다. 이 기술은 표준 솔루션을 벗어나 정사각형이나 직사각형 모양에 묶이지 않고 집을 짓기를 원하는 경우에 이상적입니다.

보강 슬래브 비디오